当前位置: 托盘 >> 托盘介绍 >> 一体化压铸,汽车轻量化大市场
一、汽车轻量化势在必行,铝压铸工艺优势显著
1.1“碳中和”目标驱动汽车行业向绿色转型,轻量化助力实现节能降耗目标
汽车尾气污染持续威胁环境,“碳中和”驱动节能减排势在必行。
截至年底,我国机动车保有量达3.95亿辆,同比增长6.18%,年增量始终保持在两千万辆左右,中长期看仍具有较快增速。高机动车保有量使得机动车尾气污染严重。根据年发布的《第二次全国污染源普查公报》,机动车排放的氮氧化物、挥发性有机物分别达/万吨,占全国排放总量的33.3%与19.3%。因此,在“蓝天保卫战”和“双碳”政策驱动下,汽车减排、低碳化发展形势较为紧迫。
燃油乘用车整体降耗目标不断提升,新能源汽车助力节能减排潜力显著。按照年10月正式发布的《节能与新能源汽车技术路线图2.0》规划,-年我国乘用车百公里油耗年均降幅逐步提高,减排压力逐年增加。
然而依据国家部委发布的-年度《中国乘用车企业平均燃料消耗量与新能源汽车积分核算情况表》,可计算得到-年传统能源乘用车新车实际平均百公里油耗分别为6.88L、6.77L、6.62L及6.46L,始终高于达标油耗6.7L、6.4L、6L、5.5L。但受新能源汽车销量持续提升影响,乘用车总体新车平均百公里油耗低于达标值,且拉动幅度越来越大。由此可见,新能源汽车具有较大节能减排潜力,随着新能源汽车渗透率的逐步提高,可以进一步缓解汽车行业的节能减排压力。
技术路线图明确新能源发展目标,年节能与新能源汽车销量占比各50%。为进一步推动汽车低碳化进程,《节能与新能源汽车技术路线图(2.0版)》提出“汽车产业碳排放总量先于国家碳排放承诺于年左右提前达到峰值,到年排放总量较峰值下降20%以上”和“新能源汽车逐渐成为主流产品,汽车产业实现电动化转型”等愿景目标。
具体里程碑目标如下:至年,节能汽车与新能源汽车年销量各占50%,汽车产业实现电动化转型;氢燃料电池汽车保有量达到万辆左右,商用车实现氢动力转型。
全球电动化趋势不断提速,新能源汽车渗透率持续超预期。国际能源署(IEA)数据显示,-年,随着各国政府加速电动化转型,汽车行业全面向“新四化”进军,全球新能源汽车实现年销量“十连增”,CAGR约81%,新能源汽车(纯电+插混)渗透率由0.01%上升至接近4%。
进入年以来,中国、欧洲作为全球前两大新能源汽车市场,销量表现持续超预期。国内新能源汽车累计销量.1万辆,同比+%,渗透率达14.2%,提升8个pct,首次突破两位数。同时期欧洲新能源汽车销量达.2万辆,同比+70%,渗透率达到14.6%,提升6个pct,延续了年以来超高景气表现;美国新能源汽车销量达65.2万辆,同比+%,渗透率达到4.3%,提升2个pct,预计年有望达到8%。
车重制约降耗、续航能力提升,轻量化需求顺应而生。电动车动力系统包括电池、电机和电控三大系统,通常占整车总质量的30~40%,在动力电池能量密度的现有水平下,电动车以及广义新能源汽车的动力系统质量与空间占比显著高于传统燃油车,车重高于传统燃油车5~25%,未来搭载智能网联相关配置后,车重会进一步上升。以广汽丰田品牌的C-HR及其纯电车型C-HREV为例,纯电车型的整备质量高于燃油版本18.27%。
目前,由于电驱动系统过重、配套成熟度不高等问题,电动汽车的实际续航能力被严重制约,成为影响消费者购车决策的重要因素。因此通过减轻整车重量以提高汽车续航能力成为解决该问题的热点技术路线,电动汽车的轻量化需求随之诞生。
轻量化可全面提升降耗和续航效率,是节能减排的有效手段之一。在节能减排和新能源汽车长续航里程持续提升的需求下,汽车轻量化是目前最直接且有效的手段。根据年中铝集团《乘用车轻量化用铝需求与供给现状与发展建议》报告,电动汽车与燃油车的整备质量每减少10%,续航里程均增加6-8%,尾气排放量和能耗将减少6-8%。此外,在保证安全强度的前提下,汽车重量越轻,加速时间越短,车身动态响应更灵活,制动距离、车身震动和噪音也会减少。
随着消费者对汽车驾乘体验要求的不断提高,轻量化带来的经济性、安全性和舒适性等方面的提升将更加迎合消费者的需求,采取轻量化技术的车企的竞争优势将更加凸显。因此通过轻量化方案来提升节能和电动汽车的降耗和续航能力已成为当前的优先选择。
1.2轻量化技术多点突破,铝压铸工艺综合占优
材料、工艺、设计多点突破,三大举措相辅相成。
目前实现轻量化的路径主要包括材料、工艺和设计三个方向。
1)轻量化材料:采用高强度钢、铝合金、镁合金、碳纤维材料等轻量化材料代替普通钢材料,通过降低用量或降低密度实现减重;
2)轻量化工艺:发展一体化压铸、激光拼焊、液压成形、轻量化连接等制造工艺,通过减少零部件或连接件用量实现减重;
3)轻量化设计:通过计算机自动化设计软件和力学理论对现有零部件进行尺寸优化、形状优化、拓扑优化实现产品减重。
其中,材料轻量化是工艺和结构轻量化的基础,根据轻量化材料的选用,工艺与结构在其基础上进行进一步减重设计;同时针对工艺与结构减重的技术发展,还可以进一步拓展不同的轻量化材料的应用范围。轻量化三大举措彼此相辅相成,共同发展。
铝压铸工艺综合优势突出,一体化压铸趋势逐步凸显。在不同的轻量化材料中,铝合金的性能、密度、成本和可加工性等综合优势突出,与多种金属合金和碳纤维相比是极具性价比和技术成熟度的轻量化材料。
在制造工艺中,高压压铸产品在高压下成型,具有致密性高、产品强度及表面硬度高、表面光洁度好等优势,适合生产复杂、薄壁的各类结构件。当前汽车技术迭代和产能提升需求不断加速,铝压铸方案综合优势明显。
随着新型铝合金材料和大型压铸设备的研发攻关不断取得突破,车企和压铸厂商已经开始陆续布局大吨位压铸机,一体化压铸技术的成熟度快速爬坡。随着大吨位压铸机的落地投产,采用一体化压铸技术生产大型车用结构件的趋势将更加清晰。一体化压铸技术可以生产更加复杂的结构件,从而为轻量化设计提供更可靠的生产工艺。
二、汽车铝合金市场空间广阔,车用铝铸件应用占比第一
2.1铝合金具备综合优势,单车用铝量提升显著
钢铝车身是当下主流方案,铝合金中长期增量优势明显。根据现有工艺与成本因素,高强度钢和铝合金占据了轻量化市场较大份额。高强度钢的材料成本因强度不同范围跨度大,工艺技术成熟,同时在抗碰撞性能方面较铝、镁合金具有明显的优势,多用于白车身上的结构件、安全件上。高强度钢通过提高自身强度性能减少车身钢材用量来实现轻量化。
铝合金的优势在于本身密度比钢低,且优良的金属性质使其可以更好地将材料减重与工艺、结构轻量化结合起来,综合减重。随着轻量化趋势、技术和材料的不断进步,铝合金将成为轻量化市场最主要的材料。《节能与新能源汽车技术路线图》中规划了我国轻量化分阶段目标,年与年单车铝合金将分别达到kg、kg,用量将大幅超越高强度钢。
镁合金减重效果优于铝,一般应用于内饰和传动零部件;目前主要受限于镁自身化学性质活跃、加工生产成本高昂,价格高于铝2-3倍,无法普遍应用于大众车型。碳纤维复合材料减重率最优,还具有耐腐蚀性以及良好的可加工、可设计性;但碳纤维目前受限于制造加工成本与难度高、回收再利用率低等因素,价格高达元/kg以上,多应用在赛车、超跑等豪华轿车中。
铝合金减重率和性价比兼顾,单车用铝量提升显著。相比于轻量化的其他材料——高强度钢、镁合金和碳纤维,
(1)从成本看:铝合金材料价格略高于高强度钢,远低于镁合金与碳纤维材料;
(2)从减重率看:铝合金密度为2.8g/cm3,减重率在40%~50%之间,仅弱于碳纤维和镁合金,大幅强于高强度钢;
(3)从工艺难度看:铝合金相关工艺已十分成熟,生产效率较高,铝压铸、铝压延、铝挤压、铝锻造工艺已实现大规模应用;
(4)从回收率上看:铝合金的回收率最高,广泛应用可推动再生铝产业发展,符合当前节能减排迫切需求,同时也可进一步降低上游原材料成本。
综合上述在高比强度、高减重率、防腐性能优异等优势,铝合金材料在汽车上的用量逐年增长。根据国际铝业协会委托CMGroup完成的《中国汽车工业用铝量评估报告(-)》,-年,中国乘用车单车用铝量方面,燃油车、纯电动车、混动车单车用铝量增幅分别为15.7%、33.6%、28.1%,且纯电动汽车单车用铝量增速明显高于传统燃油车。
2.3应用:汽车铝合金应用广泛,汽车铝铸件占比超70%
2.3.1车用铝合金覆盖范围广泛,单车用铝量持续提升
车用铝合金目前主要应用于白车身、动力总成、底盘和内饰,且继续向其余部件渗透。铝合金在整车上的应用广泛,主要包括汽车的白车身、动力系统、底盘等部分。从汽车各部件质量分布来看,车身、动力与传动系统、底盘、内饰等占比较大,分别为27.2%、22.5%、20.4%、20.4%,合计超过整车质量90%,为轻量化的主要突破方向。根据DuckrFrontir报告预测,北美轻型车的单车用铝量年总计.2Kg;其中,单车发动机、变速和传动系统、车轮、覆盖件用铝量分别为47.2Kg、38.6kg、32.7Kg和26.8Kg,合计占比约70%。预计至年,车身结构件和覆盖件铝合金渗透率将快速增长;悬架部件的份额也会增加至7%;三电部件(如电池盒、电机外壳、转换器外壳、BMS外壳等)将成为用铝增量最大的部位;整车单车用铝量将会增加至.2Kg。
2.3.2铝合金加工分为铸造和形变,压铸工艺最为成熟与高效
车用铝合金加工工艺分为铸造和形变,铝铸件在汽车用铝中占比最高。
(1)铸造铝合金:将铝合金加热至熔融状态,流入模具中冷却成型后加工成汽车零部件。铸造铝合金具有良好的导热性和抗腐蚀性,兼顾提高汽车在纵向和横向震动中的性能。铸造铝合金被车企广泛使用在发动机气缸、汽车摇臂、轮毂、变速箱壳体等耐久性要求高、结构更为复杂的位置。
(2)形变铝合金:变形铝合金是指通过冲压、弯曲、轧制、挤压等工艺使其组织、形状发生变化的铝合金。应用上,铸造铝合金一般用于结构更加复杂的部件,形变铝合金则适用于结构较为简单、对机械性能要求更高的汽车部位。根据中国船舶重工集团数据显示目前汽车各类铝合金实际占比为铸铝77%,轧制材、挤压材各占10%,锻造材最低,仅占3%。
形变铝合金机械性能好但应用范围有限,无法完成汽车精密结构件。车用形变铝合金主要包括锻造、挤压和轧制铝合金,三种形变铝合金受力方法不同,成形与性能也各不相同。
(1)锻造铝合金质量良好,冲击力承受能力强,应用于大型轧钢机的轧辊、汽轮发电机组的转子、汽车和拖拉机的曲轴、连杆等。
(2)挤压铝合金工艺灵活度高,挤压铝型材作车身骨架除了可以减轻重量,还可以通过局部零部件特殊结构增加零部件强度,但存在废料损失大、工具损耗导致成本高等问题。
(3)轧制是铝型材、铝板的主要成型工艺,主要用在金属材料型材、板、管材。形变铝合金具有塑性高、机械性能好的优点,但无法完成汽车精密结构件,产品应用范围有限。
铸造铝合金工艺分为砂型铸造和特种铸造两大类,特种铸造更适用于汽车铝合金加工。砂铸是最为传统的在砂型中生产铸件的铸造方法,但产品精度不高且生产率较低;在其基础上进一步发展的重力铸造虽然可以进一步改善问题,但也存在限制铸件体积、需严格控制模具温度否则会影响铸件质量的问题。
因此,砂型铸造在汽车零部件的应用并不广泛。砂铸之外的铸造工艺统称为特种铸造,包括压力铸造、挤压铸造、离心铸造、连续铸造等。其中,压力铸造工艺最为成熟且高效;挤压铸造产品机械性能较好于一般压铸工艺,具有液态金属利用率高、工序简化和质量稳定等优点,但难以生产结构复杂的部件,影响产品应用范围;而离心、连续铸造的产品生产较为固定,离心铸造一般用于生产管状类器具,连续铸造则用于生产断面形状不变的长铸件。
压铸是铸造工艺中最成熟、效率最高的制造技术之一,目前在汽车铸件中占比超70%。压铸是利用高压将金属熔液压入模具内,并在压力下冷却成型的制造工艺。根据中国有色金属加工工业协会数据分析显示,汽车用铝中压铸件占铸件的比重超70%。工艺优点:
(1)压铸时金属液体承受压力高,流速快;
(2)产品质量好,尺寸稳定,互换性好;
(3)生产效率高,压铸模使用次数多;
(4)适合大批量生产,经济效益好。
工艺缺点:
(1)铸件容易产生细小的气孔和缩松,导致压铸件塑性低,不宜在冲击载荷及有震动的情况下工作;
(2)高熔点合金压铸时,寿命低,影响压铸生产的扩大。为了解决上述气泡等缺点,压铸工艺如差压压铸、真空压铸等也在不断发展迭代。
此前压铸工艺主要用于发动机缸盖和缸体、悬臂架、变速器、发电机支架、离合器壳、汽车空调压缩机等,目前随着一体化、大型化压铸技术的进步,逐步向大型三电、车身结构件等方向延伸
三、一体化压铸引领技术变革,工艺升级提升行业壁垒
3.1一体化压铸:汽车制造的颠覆性技术革命
传统车身制造覆盖四大工艺,整车厂与零部件厂商分工合作。(1)冲压:借助压力机与模具将板材连续冲压为小块钣金零件;(2)焊装:将冲压好的车身零件用夹具定位,采用装配后焊接的方法将其接合形成车身总成(即白车身);(3)喷涂:喷涂油漆于白车身上,起到防腐蚀与装饰的作用;(4)总装:将车身、动力系统、电控系统、内外饰等各零件装配生产为整车。
传统车身制造的各项流程由整车厂与零部件制造商合作完成,冲压环节分为整车厂冲压外覆盖件以及外部零部件厂冲压结构组件,由于结构组件的尺寸在mm以下,一般采用中小型压力机,而覆盖件尺寸通常在mm以上需要大型压力机连续冲压。冲压环节完成后,零部件厂商采用多个机器人组成焊点车间进行组件焊接,之后再送至整车厂与其生产的外覆盖件焊接成白车身,并进行涂装和总装。相较于零部件厂,整车厂产线使用的压力机、模具、机器人远高于零部件厂,产线投资也更高。
轻量化需求推动铝合金应用,传统压铸工艺多路径改良。汽车轻量化的需求推动车身和底盘的部分零部件逐步由铝合金件替代钢制部件,其中铝铸件的占比最高。高压压铸工艺是生产铝铸件的常用工艺。它通常指压力为4~MPa,金属充填速度为0.5—m/s的压铸工艺。高压压铸产品具有成型精密、生产效率高等优点,但由于高速压射时模具型腔中的气体不能被有效排除,会形成气孔缺陷,导致铸件力学性能相对较弱。为了满足汽车零部件的性能与质量要求,行业需要解决传统高压压铸工艺存在的问题,其中包括降低压力、降低速度或者减少空气含量三种主要技术升级路径。
路径一:低压/差压压铸通过降低填充压力以提高铸件内部质量,设备操作难度增加,工艺效率有待提升。为克服铸件在高压下快速填充导致的气孔缺陷,行业开始尝试降低液体金属的充填型腔及凝固过程中的压力,即低压压铸。低压采用底注式充型,金属液充型平稳,无飞溅现象,可避免卷入气体及对型壁和型芯的冲刷,提高了铸件的合格率,铸件成形性好,对于大型薄壁铸件的成形更为有利,目前应用于轮毂、气缸架等传统产品。但有些铸件的内部质量要求高,希望在较高的压力下结晶,一般低压铸造时的结晶压力不能太大,因而在低压铸造的基础上发展出了差压压铸。与一般铸造方法相比,差压压铸使铸件强度提高约25%,延伸率提高约50%;但设备较庞大,操作麻烦,只有特殊要求时才应用,目前应用于转向节等产品。
路径二:超低速压铸可降低工艺压射速度,但生产效率大幅降低,且会对后续清理工作带来困难。除了降低压力,还可以采用超低速压铸方法,在普通压铸基础上,降低压铸过程中低速阶段的压射速度,并将液态金属保持在高压状态下,从而以层流方式充填压铸模具型腔,在压力作用下快速凝固从而获得气体含量很低的铸件。但超低速压铸方法生产效率大幅降低,且为降低速度其铸件内浇口较粗大,给后续清理工作带来困难,故实际应用较少。
路径三:真空/充氧压铸减少型腔中空气含量,设备成本较高,对工艺技术要求高。另一种提高铸件力学性能和表面质量的方法,即在压铸过程中不断降低空气含量。目前在这种方法上,有两种工艺。(1)真空压铸:通过在压铸过程中抽除压铸模具型腔内的气体而消除或显著减少压铸件内的气孔和溶解气体。真空压铸可使用较低的比压及铸造性能较差的合金,有可能用小机器压铸较大的铸件,并通过改善充填条件,压铸较薄的铸件。但真空压铸工艺的模具密封结构复杂,制造及安装较困难,因而成本较高,且如果控制不当,工艺效果就不甚显著。
目前,真空压铸用于车架、减震塔部位等。(2)充氧压铸:在压射前,向压室及型腔内通入氧气类活性气体以取代型腔中的空气,在金属液充填时,一部分氧气排除,另一部分与喷射金属液经过化学反应产生金属氧化物,并分散于铸件内部,从而减少铸件内部含气量。充氧工艺对浇口速度有较高要求,且操作工序复杂、工艺参数不易控制,在实际生产中应用较少
铝合金焊接工艺难度较大,一体化压铸技术另辟蹊径。随着压铸工艺不断发展成熟,汽车铝压铸占比越来越大。但在组装焊接的过程中,因为铝合金表面的氧化层熔点较高等特性,采用传统熔化焊存在热输入过大引起的变形、气孔、焊接接头系数低等问题,同时由于型材的厚度、断面都各不相同,在焊接时就产生了很多种组合,尤其在厚度差异很大时,热输入非常难以控制。
因此,传统的焊接工艺已无法满足铝合金材料的连接要求。目前采用的解决方法一类是发展先进焊接技术,包括主流的摩擦搅拌焊以及更加先进的激光焊。或者发展新型连接技术包括冲铆技术、螺栓自拧紧技术和胶接技术。
采用新型焊接和连接技术的方案在提高工艺难度的同时还会增加设备和时间成本。因此,改变传统车身生产流程先生产结构件后焊接组装的一体化压铸技术应运而生,一体化压铸所需生产零部件数量骤减,同时大幅减少焊接、涂胶环节,极大简化了车身整体生产流程。特斯拉专利中给出的一体化压铸设备GigaPrss的生产节拍范围为60-秒,可以显著提高车身的生产效率。
特斯拉破局车身一体化压铸,掀起汽车制造革命。年9月22日,特斯拉宣布其ModlY将采用一体式压铸后底板总成,可使下车体总成重量降低30%,制造成本下降40%。由于所有零件一次压铸成型,ModlY的零件数量比Modl3减少79个,焊点约由-个减少到50个;新的合金材料使特斯拉一体压铸的后底板总成不需要再进行热处理,制造时间由传统工艺的1-2小时缩减至3-5分钟,可实现厂内直供,如果采用传统冲压焊接工艺必须多线并进,才能满足生产节奏。下一步,特斯拉计划用2-3个大型压铸件替换由个零件组成的整个下车体总成,重量将进一步降低10%,对应续航里程可增加14%。ModlY的成功展现了一体压铸所带来的生产效率的提升、生产成本的有效降低。在特斯拉的引领下,以蔚小理为代表的造车新势力们积极布局一体化压铸技术,有望引领汽车制造业新的工艺革命
新能源三电系统轻量化潜力巨大,电池盒轻量化是增量领域。随着特斯拉在车身件上的成功突破和应用,其他系统和零部件的轻量化也在加速推进。新能源汽车采用电机驱动,动力传动系统大幅优化,动力源由车载电池包提供,三电系统导致新能源车较传统燃油车重量增加了-kg,极大影响了续航里程,因此新能源车三电系统的轻量化潜力巨大。在电池能量密度提升逐渐进入瓶颈期后,电池盒轻量化已成为当前的重要的技术路径。电池盒除了对电池起到承载作用,还要求能够保护电芯在受到外界碰撞或挤压时不被损坏,提高动力电池系统的安全性,另一方面对其导热、导电、防水、绝缘性能也有较高要求。因此,随着新能源车渗透率不断提升,满足各项安全性能要求的轻量化电池盒是全新的增量市场。
当前电池盒生产工艺效率较低,一体化压铸有望释放电池盒产能瓶颈,目前挤压铝合金工艺是电池托盘的主流生产方案,性能上挤压铝合金电池托盘具有高刚性、抗震动、挤压及冲击等性能,还可以通过型材的拼接及加工来满足不同的需求,具有设计灵活、加工方便、易于修改等优点。
然而,电池盒的焊道多且长,同时又要求焊道要小,这些都对生产技术提出了非常高的要求。提高生产成本的同时还会降低电池盒的生产效率,不能适配新能源车快速提升的渗透率。随着大吨位压铸机工艺和新型铝合金材料的不断突破,一体化压铸技术有望生产出满足安全性能要求的电池盒。参考特斯拉GigaPrss的生产效率,一体化压铸工艺有潜力替代部分传统挤压焊接工艺产能,助力电池盒突破产能瓶颈的同时降低生产成本。
电池包内部结构不断简化是趋势,一体化压铸电池盒前景广阔。目前电池包的结构趋势是从结构端往无模组方案演进。最经典的是“小模组”技术,即“电芯-模组-PACK”三层分级架构,模组即可以保护、支撑和集成电芯,同时有助于温度控制、防止热失控传播也便于维修。但模组的存在,使得整个电池包的空间利用率有所下降,模组越多,零部件越多,电池盒的结构也越复杂。
因此,将模组做大做少乃至于无模组是近年来电池系统工艺设计层面的主要
转载请注明:http://www.aideyishus.com/lkyy/5597.html